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Abstract In this paper, the property of practical input-to-state stability and its application to stability

of cascaded nonlinear systems are investigated in the stochastic framework. Firstly, the notion of (practical)

stochastic input-to-state stability with respect to a stochastic input is introduced, and then by the method of

changing supply functions, (a) an (practical) SISS-Lyapunov function for the overall system is obtained from

the corresponding Lyapunov functions for cascaded (practical) SISS subsystems.
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1 Introduction

The notion of deterministic input-to-state stability (ISS) introduced in Sontag’s seminal paper
(see [15]) plays an important role in nonlinear system analysis and synthesis (see [7,8,11,16–19]).
In view of its importance, the similar property in the stochastic setting has attracted intensive
attention (see [20–23]). The notion of γ-input-to-state stability (γ-ISS) was introduced in
[21], in which the problems of linear partial state-feedback and output-feedback stabilization
were considered for a class of stochastic systems with γ-ISS subsystem under the assumption
that nonlinear functions satisfy certain kind of global linear growth conditions. Following
this work, the notion of exponential input-to-state stability for stochastic systems was then
introduced in [22], in which the problems of static and dynamic output-feedback control were
studied for certain class of stochastic nonlinear system with global linear growth vector fields.
Different from the γ-ISS, the notion of SISS with respect to a deterministic input, which is a
generalization of the notion of noise-to-state stability (NSS) (see [10]), was introduced in [20]
to analyze the stochastic stability of singularly perturbed nonlinear systems. Recently, a gain-
function-based stochastic nonlinear small-gain theorem was given for stochastic input-to-state
practically stable (with respect to a deterministic input) subsystems in [23], in which the same
small-gain condition as the deterministic case was established. It is well known that small-gain
theorem based on Lyapunov functions is more convenient to design the small-gain controllers
using backstepping technique. But, how to generalize the deterministic Lyapunov-based (SISS)
nonlinear small-gain theorem to stochastic case is a challenging and meaningful issue (see [23]).
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Since the development of differential geometric theory for nonlinear systems, it is known
that under some conditions a system can be transformed to the system of some normal form,
which is closely related to a class of cascaded nonlinear systems. Recently, much attention has
been paid to some control problems of cascaded nonlinear systems (see [3]).

Figure 1. cascaded system Figure 2. interconnected system

Notice that the cascaded system like Figure 1 is a special form of the interconnected system
like Figure 2, which is the class of systems studied for the SISS nonlinear small-gain theorem.
Thus, for the study of Lyapunov-based SISS nonlinear small-gain theorem, it is meaningful and
helpful to study the stochastic input-to-state stability of this class of cascaded systems.

The purpose of this paper is to prepare for deriving a Lyapunov-type SISS nonlinear small-
gain theorem. Different from all the existing notions characterizing the SISS behavior, a more
practical notion of SISS with respect to a stochastic input is introduced so as to describe the
stochastic stability under stochastic inputs. The key technique adopted for stability analysis
is the method of changing supply function. The initial idea of this method came from the
deterministic work [17], but its extension to the stochastic setting will be more difficult and
challenging. It is worth pointing out that new small-gain type conditions for small signals are
obtained in the construction of Lyapunov functions for cascaded SISS systems.

The organization of this paper is as follows. Section 2 gives some notations. Section 3
illustrates the property of stochastic input-to-state stability. Section 4 presents the stability
analysis of cascaded SISS systems. Section 5 gives some conclusions.

2 Notation

The following notations will be used throughout this paper. R+ denotes the set of all non-
negative real numbers. Rn denotes the real n-dimensional space. For a given vector or matrix
X, XT denotes its transpose; Tr(X) denotes its trace when X is a square matrix; |X| denotes
the Euclidean norm of a vector X and the corresponding induced norm for matrices is denoted
by ‖X‖; ‖X‖F denotes the Frobenius norm of X defined by ‖X‖F =

√
Tr(XT X); Ci denotes

the set of all functions with continuous ith partial derivative; C2(Rn,R+) denotes the family
of all nonnegative functions V (x) on Rn which are C2 in x; K denotes the set of all functions:
R+ → R+, which are continuous, strictly increasing and vanish at zero; K∞ denotes the set of
all functions which are of class K and unbounded; KL denotes the set of all functions β(s, t):
R+ × R+ → R+, which is of class K for each fixed t, and decreases to zero as t → ∞ for each
fixed s; IA denotes the indicator function of set A; Ac denotes the complementary set of set A.

Consider the following stochastic system

dx = (f(x) + g(x)u)dt + h(x)dw, (1)

where w is an r-dimensional standard Brownian motion, x ∈ Rn is the state, u ∈ R is the
control input, f, g : Rn → Rn and h : Rn → Rn×r are assumed to be locally Lipschitz in their
arguments.
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Definition 1. For any given V (x) ∈ C2(Rn,R+), associated with the stochastic differential
equation (1) we define the differential operator L as follows:

LV =
∂V

∂x
f(x) +

∂V

∂x
g(x)u +

1
2
Tr

{
hT ∂2V

∂x2
h
}

.

3 Stochastic Input-to-State Stability

Before stating our main results in next section, we first present some notions and results about
stochastic input-to-state stability.

For control-free stochastic nonlinear systems of the form:

dx = f(x)dt + h(x)dw, (2)

the following stability notion introduced in [2] is often used in the controller design for stochastic
nonlinear systems (see [12,14] and the references therein).

Definition 2. The solution process {x(t), t ≥ 0} of the stochastic system (2) is said to be
bounded in probability, if

lim
c→∞

sup
0≤t<∞

P{|x(t)| > c} = 0.

To introduce the notion of SISS, consider the following system:

dx = f(x, v)dt + g(x, v)dw, (3)

where x ∈ Rn is the state, v = v(x, t) : Rn × R+ → Rm is the input, w is an r-dimensional
standard Brownian motion defined on the complete probability space (Ω,F , {Ft}t≥0, P ), with
Ω being a sample space, F being a σ-field, {Ft}t≥0 being a filtration, and P being a probability
measure; f : Rn×Rm → Rn and g : Rn×Rm → Rn×r are assumed to be locally Lipschitz in their
arguments. Assume that for every initial condition x0, each essentially bounded measurable
input v, the system (3) has a unique solution1 x(t) on [0,∞) which is Ft-adapted, t-continuous,
and measurable with respect to B × F , where B denotes the Borel σ−algebra of R (see [2]).
Then we have the following definition.

Definition 3. The system (3) is practically SISS if for any given ε > 0, there exist a KL
function β(·, ·), a K function γ(·) and a constant d ≥ 0 such that

P
{|x(t)| < β(|x0|, t) + γ( sup

0≤s≤t
‖vs‖) + d

} ≥ 1− ε, ∀t ≥ 0, ∀x0 ∈ Rn\{0}, (4)

where ‖vs‖ = infA⊂Ω,P (A)=0 sup{|v(x(ω, s), s)| : ω ∈ Ω\A}. When d = 0 in (4), the system (3)
is said to be SISS.

Remark 1. (i) Different from all the existing notions characterizing the SISS behavior
for a locally Lipschitz system without growth restriction, here the input v in the system (3)
is assumed to be a function of x and t, precisely, v = v(x(ω, t), t), and can be regarded as
a Markov control input, which ensures the corresponding solution process x(ω, t) is an Itô
diffusion, and hence, a Markov process (see [13]). This kind of input is the most general one
for the systems described by Itô diffusion stochastic differential equations, for which controller
1For simplicity, the solution process x(ω, t) is abbreviated as x(t) through out of the paper when there is no
confusion caused.
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design has been an active area of research in recent years (see [12,14] and the references therein).
When v(x, t) = v(t) is deterministic and d = 0, the above definition is the SISS given in [20],
and a generalization of NSS (see [10]).

(ii) When d = 0, if we view the input as the random perturbation, from (4) we can conclude
that the system (3) is stable under small random perturbations in the following sense (see [2]):
for any given ε > 0 and ∆ > 0, there exists a κ > 0 such that whenever |x0|+ sup

x,t
|v(x, t)| < κ,

the following inequality holds:

P{|x(t)| > ∆} < ε, ∀t > 0.

In fact, for given ε > 0 and ∆ > 0, if (4) holds, then by letting γ1(·) = β(·, 0) and κ =
min{γ−1

1 (∆
2 ), γ−1(∆

2 )}, from |x0|+ sup
x,t

|v(x, t)| < κ, one can get |x0| < κ and sup
x,t

|v(x, t)| < κ,

which ensures β(|x0|, 0) < ∆
2 , γ(sup

x,t
|v(x, t)|) < ∆

2 . Hence, P{|x(t)| ≤ ∆} ≥ P{|x(t)| ≤
β(|x0|, 0) + γ(sup

x,t
|v(x, t)|)} ≥ P{|x(t)| < β(|x0|, t) + γ( sup

0≤s≤t
‖vs‖)} ≥ 1 − ε, or equivalently,

P{|x(t)| > ∆} < ε.
(iii) The above definition is also different from the notion of the γ-ISS (see [21]). Actually,

they address two different aspects. γ-ISS addresses whether the state x(t) can stay in a small
neighborhood of the equilibrium when t → ∞, or when the initial condition x0 → 0 and the
input is bounded by a function of the state. While SISS given by Definition 3 addresses whether
the state x(t) can be bounded by a function of the initial conditions x0, the time t, and the
input {v(s) : 0 ≤ s ≤ t}. The former is a kind of qualitative description, while the later makes
the role of the initial conditions and the input explicit.

(iv) The property (4) ensures that when the input v ≡ 0 and d = 0, the system (3) is
globally asymptotically stable in probability (see [10]). It also ensures that the solution process
of the system (3) is bounded in probability when the input v is bounded almost surely (in other
words, there exists a constant M > 0 such that P{sup

t≥0
|v(x(ω, t), t)| ≤ M} = 1). In fact, let

A = {|x(t)| < β(|x0|, t) + γ( sup
0≤s≤t

‖vs‖) + d}, B = {sup
t≥0

|v(x(ω, t), t)| ≤ M}, Ac = Ω − A and

Bc = Ω− B. Then, we have P (Bc) = 1− P (B) = 0, and so,

P (Ac) ≤ P (Ac ∪ Bc) ≤ P (Ac) + P (Bc) = P (Ac).

This leads to P (Ac ∪ Bc) = P (Ac) = 1− P (A) ≤ ε, and

P (A ∩ B) = 1− P ((A ∩ B)c) = 1− P (Ac ∪ Bc) ≥ 1− ε.

Thus, P{|x(t)| < β(|x0|, t) + γ(M) + d} ≥ 1− ε, ∀t ≥ 0, or equivalently, P{|x(t)| ≥ β(|x0|, t) +
γ(M) + d} < ε, ∀t ≥ 0. This together with the property of the function β gives

P{|x(t)| ≥ β(|x0|, 0) + γ(M) + d} ≤ P{|x(t)| ≥ β(|x0|, t) + γ(M) + d} < ε.

Let C = β(|x0|, 0) + γ(M) + d. Then, sup
0≤t<∞

P{|x(t)| > c} < ε, ∀c > C. Hence, the solution

process of the system (3) is bounded in probability by Definition 2.

Definition 4. A C2 function V (x) is said to be a practical SISS-Lyapunov function for the
system (3) if there exist K∞ functions α1, α2, α, χ and a constant d ≥ 0 such that

α1(|x|) ≤ V (x) ≤ α2(|x|), (5)

LV ≤ χ(|v|)− α(|x|) + d. (6)
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When d = 0 in (6), the function V is said to be an SISS-Lyapunov function for the system (3).
The following theorem provides a sufficient condition for (practically) SISS.

Theorem 1. The system (3) is practically SISS (resp. SISS) if there exists a practical SISS-
(resp. SISS-) Lyapunov function.

Proof. See the Appendix.

Remark 2. From Theorem 1 one can see that SISS is endowed with the property of dis-
sipation. The combination of the functions χ and α serves as one characterization of the
input-to-state gain of the system. Here as the deterministic case in [17], the function V (x) is
called storage function for the system (3), and the pair of the K∞ functions (χ, α) is a supply
pair for the system (3). In the next section, we will explore the possible supply pair for a given
dissipative system so as to design an SISS-Lyapunov function for the whole system.

Remark 3. In [23], under the conditions (5)–(6), the following result is given: for any given
ε > 0, there exists a KL function β(·, ·), a K function γ(·), and a constant d̃ ≥ 0 such that

P
{|x(t)| < β(|x0|, t) + γ( sup

0≤s≤t
|v(s)|) + d̃

} ≥ 1− ε, ∀t ≥ 0, ∀x0 ∈ Rn\{0}.

It should be pointed out that this result holds only for the deterministic input from the idea
of the proof presented in [23]. Here we consider the stochastic input case and obtain a general
and more reasonable stability result (4) as Remark 1 states.

From Theorem 1, we can obtain the following useful criterion on the boundedness of the
solution.

Corollary 1. For the system (2), assume that f(x) and h(x) are locally Lipschitz. If
there exists a positive-definite, radially unbounded, twice continuously differentiable function
V : Rn → R, a constant c ≥ 0, and a positive-definite and radially unbounded function W (x)
such that

LV ≤ −W (x) + c, (7)

then the solution process is bounded in probability.

Proof. According to Theorem 4.1 of [2], the system (2) has a unique solution x(t) on [0,∞).
Noticing that V is positive-definite, radially unbounded and continuous, we have (5). Let
α(r) = inf

|x|≥r
W (x). Then, α(r) ∈ K∞ and LV ≤ −α(|x|) + c. In the proof of Theorem 1 (see

Appendix), let v = 0 and d = c. Then we can conclude that for any given ε > 0, there exists
β(·, ·) ∈ KL and γ ∈ K such that

P{|x(t)| < β(|x0|, t) + γ(c)} ≥ 1− ε, ∀t ≥ 0, ∀x0 ∈ Rn\{0}.

By Remark 1(iv), the solution of the system (2) is bounded in probability.
It is known that in the deterministic case, finite-dimensional stable linear systems are ISS.

In the following, we will illustrate the SISS property by three classes of stochastic systems
including the linear and bilinear ones.

1) Consider the following stochastic linear system with input and additive noise:

dx = (Ax + Bv)dt + CT dw, (8)

where x ∈ Rn is the state, v ∈ Rm is the input, w is an r-dimensional standard Brownian
motion, and A,B, C are constant matrices with appropriate dimensions.
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When A is asymptotically stable, AT P + PA = −2I has a positive-definite solution P . Let
V = xT Px. Then, by simple computation we have

LV ≤ −|x|2 + ‖PB‖2|v|2 + Tr(P )‖C‖2F . (9)

By Theorem 1, the system (8) is practically SISS when v is regarded as the input.
2) Consider the following stochastic bilinear system with multiplicative noise:

dx = (Ax + Bv)dt + xCT dw, (10)

where x, v, w are the same as in (8), and A,B, C are constant matrices with appropriate di-
mensions.

When A+ CT C
2 I is asymptotically stable, there exists a positive-definite matrix P satisfying

AT P + PA + CT CP =
(
A +

CT C

2
I
)T

P + P
(
A +

CT C

2
I
)

= −2I.

Let V = xT Px. Then we have

LV ≤ −|x|2 + ‖PB‖2|v|2. (11)

By Theorem 1, the system (10) is SISS with respect to the input v.
3) Consider the following bilinear system with input in diffusion term:

dx = (Ax + Bv)dt + (Cx + Dv)dw, (12)

where x, v are the same as in (8), w is a 1-dimensional standard Brownian motion, A,B, C, D
are constant matrices with appropriate dimensions.

When the following Riccati equation

AT P + PA + CT PC = −3I

has a positive-definite solution P , let V = xT Px. Then we have

LV ≤ −|x|2 + (‖PB‖2 + ‖CT PD‖2 + ‖DT PD‖)|v|2. (13)

According to Theorem 1, the system (12) is SISS with respect to the input v.

4 Stability of Cascaded SISS Stochastic Nonlinear Systems

In this section, we are to study the cascade of the two SISS systems.
Consider the system in cascade form:

dx =f1(x, z)dt + g1(x, z)dw, (14)

dz =f2(z, u)dt + g2(z, u)dw, (15)

where x ∈ Rn, z ∈ Rm are the states, u ∈ Rk is the input; fi, gi are locally Lipschitz functions;
there exist two positive-definite and radically unbounded functions V1(x) ∈ C2(Rn,R+), V2(z) ∈
C2(Rm,R+), K∞ functions αx, αz, γ1 and γ2, and constants d1 ≥ 0, d2 ≥ 0 such that

LV1(x) ≤ −αx(|x|) + γ1(|z|) + d1, (16)

LV2(z) ≤ −αz(|z|) + γ2(|u|) + d2. (17)
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In the following, we study the stochastic input-to-state stability of the system (14)–(15) by
changing supply functions of the subsystem (15).

Consider the following condition:

Assumption 1. There exist known smooth nonnegative functions ψz and ψ2 satisfying
|∇V2| ≤ ψz(|z|) and ‖g2(z, u)‖ ≤ ψ2(|z|), where and whereafter ∇V2 = ∂V2

∂z .

Remark 4. In the above assumption, |∇V2| ≤ ψz(|z|) is a general assumption and easy to
verify; while ‖g2(z, u)‖ ≤ ψ2(|z|) is a constraint on the diffusion term, which reflects that the
diffusion term of the subsystem is confined by the dynamics itself and that the effect of the
input can be viewed as bounded.

For V2(z) is positive-definite, radially unbounded and continuous, there exist α1z, α2z ∈ K∞
such that α1z(|z|) ≤ V2(z) ≤ α2z(|z|).

With these notations, we have the following results.

Lemma 1. If

lim sup
s→0+

γ1(s)
αz(s)

< ∞, lim sup
s→0+

ψ2
z(s)ψ2

2(s)
αz(s)

< ∞, (18)

and ∫ ∞

0

[ξ(α−1
1z (s))]′e−

∫ s

0
[ζ(α−1

1z (τ))]−1dτ
ds < ∞, (19)

where continuous increasing functions ξ(s) ≥ 0 and ζ(s) > 0 defined on [0,∞) satisfy that

ξ(s)αz(s) ≥ 8γ1(s), ζ(s)αz(s) ≥ 4ψ2
z(s)ψ2

2(s), (20)

then there exists a nondecreasing positive function ρ(·) ∈ C1[0,∞) such that 2

ρ(V2(z))αz(|z|) ≥ 4ρ′(V2(z))ψ2
z(|z|)ψ2

2(|z|) + 8γ1(|z|), ∀z ∈ Rm. (23)

Proof. Let

q1(s) =
1

ζ(α−1
1z (s))

, q2(s) =
ξ(α−1

1z (s))
ζ(α−1

1z (s))
,

and

ρ(s) = e

∫ s

0
q1(τ)dτ

[
ρ(0)−

∫ s

0

q2(u)e−
∫ u

0
q1(τ)dτ

du
]

(24)

with ρ(0) being an arbitrary positive number satisfying

ρ(0) ≥ ξ(0) +
∫ ∞

0

[ξ(α−1
1z (s))]′e−

∫ s

0
q1(τ)dτ

ds.

Then, it is easy to see that

ρ(s) = ρ′(s)ζ(α−1
1z (s)) + ξ(α−1

1z (s)), s ≥ 0. (25)

2When d1 = d2 = 0, accordingly, (20) and (23) change to the following, respectively,

ξ(s)αz(s) ≥ 4γ1(s), ζ(s)αz(s) ≥ 2ψ2
z(s)ψ2

2(s), (21)

ρ(V2(z))αz(|z|) ≥ 2ρ′(V2(z))ψ2
z(|z|)ψ2

2(|z|) + 4γ1(|z|), ∀z ∈ Rm. (22)
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Noticing that
∫ s

0

q2(u)e−
∫ u

0
q1(τ)dτ

du +
q2(s)
q1(s)

e
−

∫ s

0
q1(τ)dτ

=−
∫ s

0

q2(u)
q1(u)

de
−

∫ u

0
q1(τ)dτ +

q2(s)
q1(s)

e
−

∫ s

0
q1(τ)dτ

=− q2(u)
q1(u)

e
−

∫ u

0
q1(τ)dτ

∣∣∣
s

0
+

∫ s

0

[q2(u)
q1(u)

]′
e
−

∫ u

0
q1(τ)dτ

du +
q2(s)
q1(s)

e
−

∫ s

0
q1(τ)dτ

=ξ(0) +
∫ s

0

[ξ(α−1
1z (u))]′e−

∫ u

0
q1(τ)dτ

du

≤ρ(0), ∀s ≥ 0,

we have

ρ′(s) = e

∫ s

0
q1(τ)dτ

[
ρ(0)−

∫ s

0

q2(u)e−
∫ u

0
q1(τ)dτ

du− q2(s)
q1(s)

e
−

∫ s

0
q1(τ)dτ

]
≥ 0, ∀s ≥ 0.

This together with (25) leads to

ρ(V2(z)) =ρ′(V2(z))ζ(α−1
1z (V2(z))) + ξ(α−1

1z (V2(z))) ≥ ρ′(V2(z))ζ(|z|) + ξ(|z|)

≥ρ′(V2(z))
4ψ2

z(|z|)ψ2
2(|z|)

αz(|z|) +
8γ1(|z|)
αz(|z|) .

Multiplying both sides of the above inequality by αz(|z|) gives (23).
Thus, we obtain the stability of cascaded SISS nonlinear systems.

Theorem 2. For the system (14)–(15) with (16)–(17) satisfied, suppose that the small-gain
type conditions (18)–(19) hold. Then, the system (14)–(15) is practically SISS with respect to
the input u.

Proof. For the nondecreasing positive function ρ(·) ∈ C1[0,∞) defined in Lemma 1, let

U(z) =
∫ V2(z)

0

ρ(t)dt.

Denote η(·) = α2z(α−1
z (2γ2(·))) ∈ K∞ and notice that when 1

2αz(|z|) ≥ γ2(|u|),

ρ(V2(z))[γ2(|u|)− αz(|z|)] ≤ ρ(η(|u|))γ2(|u|)− 1
2
ρ(V2(z))αz(|z|); (26)

when 1
2αz(|z|) < γ2(|u|), |z| < α−1

z (2γ2(|u|)) and V2(z) < α2z(α−1
z (2γ2(|u|))), and hence,

ρ(V2(z))[γ2(|u|)− αz(|z|)] < ρ(η(|u|))γ2(|u|)− 1
2
ρ(V2(z))αz(|z|). (27)

Similarly, considering the cases where 1
4αz(|z|) ≥ d2 and 1

4αz(|z|) < d2, we have

ρ(V2(z))[d2 − 1
2
αz(|z|)] < ρ(α2z(α−1

z (4d2)))d2 − 1
4
ρ(V2(z))αz(|z|).

Combining with (26)–(27), we have

ρ(V2(z))[d2 + γ2(|u|)− αz(|z|)] < ρ
(
α2z(α−1

z (4d2))
)
d2 + ρ

(
η(|u|))γ2(|u|)− 1

4
ρ(V2(z))αz(|z|).
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Then, by Itô formula and (23) we have3

LU =ρ(V2(z))LV2 +
1
2
ρ′(V2(z))‖∇V T

2 g2‖2

≤ρ(V2(z))[d2 + γ2(|u|)− αz(|z|)] +
1
2
ρ′(V2(z))ψ2

z(|z|)ψ2
2(|z|)

≤ρ
(
α2z(α−1

z (4d2))
)
d2 + ρ

(
η(|u|))γ2(|u|)− 1

4
ρ(V2(z))αz(|z|) +

1
2
ρ′(V2(z))ψ2

z(|z|)ψ2
2(|z|)

≤ρ
(
α2z(α−1

z (4d2))
)
d2 + ρ(η(|u|))γ2(|u|)− 1

8
ρ
(
V2(z)

)
αz(|z|)− γ1(|z|). (29)

Let
W (x, z) = V1(x) + U(z).

Then, by (16) and (29) we obtain

LW =LV1 + LU

≤ρ(α2z(α−1
z (4d2)))d2 + ρ(η(|u|))γ2(|u|)− 1

8
ρ(V2(z))αz(|z|)− αx(|x|) + d1

≤− α(|(x, z)|) + γ(|u|) + d, (30)

where α(r) = inf
|(x,z)|≥r

{ 1
8ρ(0)αz(|z|) + αx(|x|)}, γ(r) = ρ(η(r))γ2(r), d = ρ(α2z(α−1

z (4d2)))d2 +

d1.
Thus, by Theorem 1, the system (14)–(15) is practically SISS with respect to the input u.

The following corollary is a generalization of Theorem 2 in [17].

Corollary 2. For the system (15) with the supply pair (γ2, αz) and d2 = 0, suppose that
Assumption 1 and lim sups→0+

ψ2
z(s)ψ2

2(s)
αz(s) < ∞ hold. If there is a K∞ function α̃(·) such that

lim sup
s→0+

α̃(s)
αz(s)

< ∞, (31)

and ∫ ∞

0

[ξ(α−1
1z (s))]′e−

∫ s

0
[ζ(α−1

1z (τ))]−1dτ
ds < ∞, (32)

where ξ(s) ≥ 0 and ζ(s) > 0 are continuous increasing functions defined on [0,∞) satisfying

ξ(s)αz(s) ≥ 4α̃(s), ζ(s)αz(s) ≥ 2ψ2
z(s)ψ2

2(s), (33)

then there exists a function γ̃ ∈ K∞ such that (γ̃, α̃) is a supply pair.

Proof. In the proof of Theorem 2, let α̃(s) = γ1(s) and γ̃(s) = ρ(η(s))γ2(s). Then, by (28)
we obtain a new supply pair (γ̃, α̃) and a new storage function U(·) satisfying

LU ≤ γ̃(|u|)− α̃(|z|).

Remark 5. It is worth noticing that the technical inequalities in (18) are reminiscent of,
but are different from, the (local) small-gain conditions in the setting of deterministic controller
design (see [4,6]). For both settings, these conditions are required to hold only for small signals.
3When d1 = d2 = 0, accordingly, (29) changes to

LU ≤ ρ(η(|u|))γ2(|u|)− 1

4
ρ(V2(z))αz(|z|)− γ1(|z|). (28)
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Remark 6. To ensure the existence of the ρ(s) satisfying (23), the condition (18) seems
necessary; however, the condition (19) is not. In fact, let ζ1(s) = ψ2

z(s)ψ2
2(s)/αz(s). Then,

when lim sup
s→0+

ζ1(s) = ∞, ζ1(s) is decreasing, lim sup
s→0+

γ1(s)/αz(s) < ∞ and

∫ ∞

0

e
−

∫ s

0
1

ζ1(α
−1
2z

(τ))
dτ

[ξ(α−1
1z (s))]

′
ds < ∞, (34)

we can obtain a function ρ(s) similarly:

ρ(s) = e

∫ s

0
1

ζ1(α
−1
2z

(τ))
dτ[

ρ(0)−
∫ s

0

ξ(α−1
1z (u))

ζ1(α−1
2z (u))

e
−

∫ u

0
1

ζ1(α
−1
2z

(τ))
dτ

du
]
,

where ρ(0) can be any constant satisfying

ρ(0) ≥ ξ(0) +
∫ ∞

0

e
−

∫ u

0
1

ζ1(α
−1
2z

(τ))
dτ

[ξ(α−1
1z (u))]

′
du.

It should be pointed out that if ζ1(α−1
2z (s)) has zeros in (0,∞), then ζ1(α−1

2z (s))+a can be used
to replace ζ(α−1

2z (s)) with a being an arbitrary positive constant.

Remark 7. We now give some classes of systems with (19) or (34) satisfied4.
Class 1. There is a known positive constant M such that 4γ1(s)/αz(s) ≤ M , ∀s > 0.

In this case, the condition (21) holds for ξ(s) = M , which implies (19). ρ(s) = M or a
larger constant can satisfy (22). Stochastic linear systems are within this class. By (9), (11),
(13), we can see αz(s) = c1s

2, γ1 = c2s
2, which always satisfy Class 1.

Class 2. There are known constants a > 0, b ≥ 0, c ∈ (0, 1) and d ≥ 0 such that 4γ1(s)/αz(s) ≤
aα1z(s) + b, 2ψ2

z(s)ψ2
2(s)/αz(s) ≤ cα1z(s) + d, ∀s > 0.

In this case, by taking ξ(s) = aα1z(s) + b and ζ(s) = cα1z(s) + d one can verify (19).
Below is an example of such systems.

Example 1. Consider the following system:




dx = (−x3 − xz2)dt + zxdw,

dz = (−4z +
1
2
u2)dt +

1√
2
z sinudw.

(35)

Let V1 = 1
2x2, V2 = 1

2z2, ψz(s) = s, ψ2(s) = 1√
2
s. Then we have

|g2(z, u)| ≤ ψ2(|z|), |∇V2| ≤ ψz(|z|),
LV1 ≤ −3

4
x4 +

1
4
z4, LV2 ≤ −7

2
z2 +

1
4
u4,

and 4γ1(s)/αz(s) ≤ 2
7s2, 2ψ2

z(s)ψ2
2(s)/αz(s) ≤ 2

7s2.
By Lemma 1, we can choose ρ(s) = 4

3s + 16
21 .

Class 3. There is a constant M > 0 and a nonnegative polynomial function Pn(s) such that
2ψ2

z(s)ψ2
2(s)/αz(s) ≤ M and 4γ1(α−1

1z (s))/αz(α−1
1z (s)) ≤ Pn(s).

In this case, by taking ζ(s) = M and ξ(s) = P ∗n(α1(s)) one can verify (19). Here P ∗n(s) is
an increasing nonnegative polynomial function satisfying Pn(s) ≤ P ∗n(s).

Below are two examples of such systems.

4Without loss of generality, here the conditions with respect to SISS (i.e. d1 = d2 = 0) are discussed.
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Example 2. When the second subsystem is noise-free, i.e. g2 ≡ 0, we have ψ2 = 0
and ζ(s) can be any small positive constant. In this case, the condition (18) comes to be
lim sup
s→0+

γ1(s)/αz(s) < ∞. And an increasing positive function ρ(·) satisfying (22) can easily be

found.

Example 3. Consider the z-dynamics

dz = (−6z3 + zu2)dt + z2 u

1 + u2
dw.

Let V2(z) = ln(1 + z2), ψ2(s) = 1
2s2, ψz(s) = 2s

1+s2 . Then, we have

|g2(z, u)| ≤ ψ2(|z|), |∇V2| = | 2z

1 + z2
| ≤ ψz(|z|), LV2 ≤ − 10z4

1 + z2
+ u4.

If the x-dynamics satisfies that

LV1 ≤ −αx(|x|) + γ1(|z|)

with γ1(s) = cs4, then 4γ1(s)/αz(s) ≤ 2
5 (1 + s2), 2ψ2

z(s)ψ2
2(s)/αz(s) ≤ 1

5 .
By Lemma 1, we can design ρ(s) = c3e

s for some positive constant c3.
Class 4. ψ2

z(s)ψ2
2(s)/αz(s) is decreasing, lim sup

s→0+
ψ2

z(s)ψ2
2(s)/αz(s) = ∞, and there is a

nonnegative polynomial function Pn(s) such that 4γ1(α−1
1z (s))/αz(α−1

1z (s)) ≤ Pn(s).
In this case, one can choose an increasing nonnegative polynomial function P ∗n(s) satisfying

P ∗n(s) ≥ Pn(s), and ξ(s) = P ∗n(α1z(s)). Thus, (34) holds.

Example 4. Suppose the z-dynamics is of the form

dz =
(
− z5 − 1

2
z + z2u2

)
dt + z sinudw.

Let V2 = 1
2z2, α1z(s) = 1

2s2, ψ2(s) = s, ψz(s) = s. Then, we have

LV2 ≤ −αz(|z|) + γ2(|u|),
2ψ2

z(s)ψ2
2(s)/αz(s) =

2
s2

,

where αz(s) = 1
2s6, γ2(s) = 1

2s4. The x-dynamics can be any system such that γ1(α
−1
1z (s))

αz(α−1
1z (s))

=
γ1(
√

2s)
4s3 can be dominated by a nonnegative polynomial function.

5 Conclusions

The stability of cascaded stochastic input-to-state stable stochastic nonlinear systems was in-
vestigated. Based on a general and more reasonable (practical) SISS notion introduced, (a)
an (practical) SISS-Lyapunov function for the overall system was constructed from the cor-
responding (practically) SISS-Lyapunov functions of the subsystems. It has been shown that
the cascade of two (practical) SISS systems is again (a) an (practical) SISS system if the new
small-gain type conditions disclosed in this paper are satisfied.
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Appendix: Proof of Theorem 1

Let
B = {x : |x| < α−1(qχ(‖v‖∞) + qd)}, Bc = Rn\B,

where ‖v‖∞ = sup
t≥0

‖vt‖ = sup
t≥0

inf
A⊂Ω,P (A)=0

sup{|v(x(ω, t), t)| : ω ∈ Ω\A}, and q ≥ 1 is a

constant. Define a sequence of stopping times {τi}i≥0:

τ0 = 0,

τ1 =
{

inf{t > τ0 : x(t) ∈ B}, if {t > τ0 : x(t) ∈ B} 6= ∅;
∞, otherwise;

τ2i =
{

inf{t > τ2i−1 : x(t) ∈ Bc}, if {t > τ2i−1 : x(t) ∈ Bc} 6= ∅;
∞, otherwise;

τ2i+1 =
{

inf{t > τ2i : x(t) ∈ B}, if {t > τ2i : x(t) ∈ B} 6= ∅;
∞, otherwise,

where i = 1, 2, · · ·. Note that Bc is a closed set, for any t ≥ 0 and any i = 1, 2, · · ·. Then, if
t ∈ [τ2i, τ2i+1], then x(t) ∈ Bc, and if t ∈ (τ2i+1, τ2i+2), then x(t) ∈ B.

We now complete the proof by considering the following two cases: x0 ∈ Bc\{0} and
x0 ∈ B\{0}, respectively.

Case 1. x0 ∈ Bc\{0}. In this case, for any t ∈ [0, τ1], x(t) ∈ Bc.
By the definitions of τ2i and τ2i+1, for any t ∈ [τ2i, τ2i+1], i = 0, 1, 2, · · ·,

|x(t)| ≥ α−1(qχ(‖v‖∞) + qd) ≥ α−1(qχ(|v|) + qd) a.s.

which together with (6) leads to

LV (x(t)) ≤ −
(
1− 1

q

)
α(|x(t)|), a.s. (A.1)

By (3) and Itô formula we have

V
(
x(t)

)
= V

(
x(0)

)
+

∫ t

0

LV
(
x(s)

)
ds +

∫ t

0

∂V
(
x(s)

)

∂x
g
(
x(s), v(x(s), s)

)
dw(s), (A.2)

and by [1,p.72], for any t ≥ 0, i = 0, 1, 2, · · ·,

V
(
x(t ∧ τ2i)

)
= V

(
x(0)

)
+

∫ t∧τ2i

0

LV
(
x(s)

)
ds +

∫ t∧τ2i

0

∂V
(
x(s)

)

∂x
g
(
x(s), v

(
x(s), s

))
dw(s),

V
(
x(t ∧ τ2i+1)

)
= V

(
x(0)

) ∫ t∧τ2i+1

0

LV
(
x(s)

)
ds +

∫ t∧τ2i+1

0

∂V
(
x(s)

)

∂x
g
(
x(s), v

(
x(s), s

))
dw(s).

From the above two equalities and Lemma 4.1 of Chapter 4 in [1] it follows that

V
(
x(t ∧ τ2i+1)

)− V
(
x(t ∧ τ2i)

)

=
∫ t∧τ2i+1

t∧τ2i

LV
(
x(s)

)
ds +

∫ t∧τ2i+1

t∧τ2i

∂V
(
x(s)

)

∂x
g
(
x(s), v(x(s), s)

)
dw(s). (A.3)

By Lemma 4.1 and Theorem 4.7 of Chapter 4 in [1] we obtain that
∫ t∧τ2i+1

t∧τ2i

∂V
(
x(s)

)

∂x
g
(
x(s), v(x(s), s)

)
dw(s)

=
∫ (t∨τ2i)∧τ2i+1

τ2i

∂V
(
x(s)

)

∂x
g
(
x(s), v(x(s), s)

)
dw(s) a.s. (A.4)
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Noticing that

V
(
x(t ∧ τ2i+1)

)− V
(
x(t ∧ τ2i)

)
= V

(
x
(
(t ∨ τ2i) ∧ τ2i+1

))− V
(
x(τ2i)

)
,

and ∫ t∧τ2i+1

t∧τ2i

LV
(
x(s)

)
ds =

∫ (t∨τ2i)∧τ2i+1

τ2i

LV
(
x(s)

)
ds,

by (A.3) and (A.4) we have

V
(
x((t ∨ τ2i) ∧ τ2i+1)

)
=V (x(τ2i)) +

∫ (t∨τ2i)∧τ2i+1

τ2i

LV
(
x(s)

)
ds

+
∫ (t∨τ2i)∧τ2i+1

τ2i

∂V
(
x(s)

)

∂x
g
(
x(s), v(x(s), s)

)
dw(s)a.s.

According to the above equality and A.1, noticing that q ≥ 1, we obtain that the process
V i

t := V (x((t ∨ τ2i) ∧ τ2i+1)) is a supermartingale.
Thus, by following the proof of Theorem 3.3 in [10], we obtain that for any ε′, there exists

a class KL-function βi(·, ·) such that

P{|x((t ∨ τ2i) ∧ τ2i+1)| < βi(|xτ2i
|, t)} ≥ 1− ε′, ∀t ≥ 0, x(τ2i) ∈ Rn\{0}.

In particular, for i = 0, if we write β0 as β, then

P{|x(t ∧ τ1)| < β(|x0|, t)} ≥ 1− ε′, ∀t ≥ 0, x0 ∈ Rn\{0}. (A.5)

Now let us pay attention to x(t ∨ τ1). Define

A =
∞⋃

i=0

(τ2i+1, τ2i+2), C =
∞⋃

i=1

[τ2i, τ2i+1].

Then, A ∩ C = ∅ and (τ1,∞) = A ∪ C, and hence,

E[V (x(t ∨ τ1))]

=E[V (x(t ∨ τ1))I{t∈[0,τ1]}] + E[V (x(t ∨ τ1))I{t∈(τ1,∞)}]

=E[V (x(τ1))I{t∈[0,τ1]}] + E[V (x(t ∨ τ1))I{t∈A}] + E[V (x(t ∨ τ1))I{t∈C}]

=E[V (x(τ1))I{t∈[0,τ1]}] +
∞∑

i=0

E[V (x(t))I{t∈(τ2i+1,τ2i+2)}]

+
∞∑

i=1

E[V (x(t))I{t∈[τ2i,τ2i+1]} ]. (A.6)

Since the process V i
t := V (x((t ∨ τ2i) ∧ τ2i+1)) is a supermartingale, we have

E[V (x((t ∨ τ2i) ∧ τ2i+1))] ≤ E[V (x(τ2i))]. (A.7)

By the continuity of the trajectory, x(τ2i) and x(τ2i+1) lie on the boundary of the set B,
i.e. x(τ2i) = x(τ2i+1) = α−1(qχ(‖v‖∞) + qd) is a constant. Hence, we have

E[V (x(τ1))I{t∈[0,τ1]}] ≤ P{t ∈ [0, τ1]} · [α2(α−1(qχ(‖v‖∞) + qd))], (A.8)
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and by (A.7),

E[V (x(t))I{t∈[τ2i,τ2i+1]} ]

=E[V (x((t ∨ τ2i) ∧ τ2i+1))I{t∈[τ2i,τ2i+1]} ]

=E[V (x((t ∨ τ2i) ∧ τ2i+1))]− E[V (x((t ∨ τ2i) ∧ τ2i+1))I{t<τ2i} ]

− E[V (x((t ∨ τ2i) ∧ τ2i+1))I{t>τ2i+1} ]

=E[V (x((t ∨ τ2i) ∧ τ2i+1))]− E[V (x(τ2i)I{t<τ2i} ]− E[V (x(τ2i+1)I{t>τ2i+1} ]

=E[V (x((t ∨ τ2i) ∧ τ2i+1))]− E[V (x(τ2i))] · P{t < τ2i or t > τ2i+1}
=E[V (x((t ∨ τ2i) ∧ τ2i+1))]− E[V (x(τ2i))] · (1− P{t ∈ [τ2i, τ2i+1]})
≤E[V (x(τ2i))]− E[V (x(τ2i))] · (1− P{t ∈ [τ2i, τ2i+1]})
=P{t ∈ [τ2i, τ2i+1]} · E[V (x(τ2i))]

≤P{t ∈ [τ2i, τ2i+1]} · [α2(α−1(qχ(‖v‖∞) + qd))]. (A.9)

Noticing that t ∈ (τ2i+1, τ2i+2) implies x(t) ∈ B, we have

∞∑

i=0

E[V (x(t))I{t∈(τ2i+1,τ2i+2)}]

≤
∞∑

i=0

P{t ∈ (τ2i+1, τ2i+2)} · [α2(α−1(qχ(‖v‖∞) + qd))]. (A.10)

Thus, by (A.6), (A.8), (A.9) and (A.10) one can get

E[V (x(t ∨ τ1))] ≤ α2

(
α−1(qχ(‖v‖∞) + qd)

)
. (A.11)

Recalling that V (x) is nonnegative, we have

E[V (x(t ∨ τ1))]

≥E[V (x(t ∨ τ1))I{V (x(t∨τ1))≥δ(α2(α−1(qχ(‖v‖∞)+qd)))}]

≥[δ(α2(α−1(qχ(‖v‖∞) + qd)))]P
{
V

(
x(t ∨ τ1)

) ≥ δ(α2(α−1(qχ(‖v‖∞) + qd)))
}
.

(A.12)

This together with (A.11) gives

P{V (x(t ∨ τ1)) ≥ δ(α2(α−1(qχ(‖v‖∞) + qd)))} ≤ α2(α−1(qχ(‖v‖∞) + qd))
δ(α2(α−1(qχ(‖v‖∞) + qd)))

≤ ε′′, (A.13)

where ε′′ can be made arbitrarily small by an appropriate choice of δ ∈ K∞. Thus, by (5) and
(A.13) we have

P{|x(t ∨ τ1)| < α−1
1 (δ(α2(α−1(qχ(‖v‖∞) + qd))))} ≥ 1− ε′′. (A.14)

Let γ(s) = α−1
1 (δ(α2(α−1(2qχ(s))))) and γd = α−1

1 (δ(α2(α−1(2qd)))). Then, by simple calcu-
lation it can be verified that for any t ≥ 0, x0 ∈ Bc\{0},

P{|x(t)| < β(|x0|, t) + γ(‖v‖∞) + γd}
≥P{|x(t)| < β(|x0|, t) + α−1

1 (δ(α2(α−1(qχ(‖v‖∞) + qd))))}
≥P{{|x(t ∧ τ1)| < β(|x0|, t)} ∪ {|x(t ∨ τ1)| < α−1

1 (δ(α2(α−1(qχ(‖v‖∞) + qd))))}}.
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Combining this with (A.5) and (A.14) leads to

P{|x(t)| < β(|x0|, t) + γ(‖v‖∞) + γd} ≥ max{1− ε′, 1− ε′′}
=1−min{ε′, ε′′} , 1− ε, ∀t ≥ 0, x0 ∈ Bc\{0}. (A.15)

Case 2. x0 ∈ B\{0}. In this case τ1 = 0 a.s.
When t > 0, P{t ∈ (τ1,∞)} = P{t ∈ (0,∞)} = 1. Following the proof of Case 1, we know

that (A.14) still holds, and then,

P{|x(t)| < β(|x0|, t) + γ(‖v‖∞) + γd}
≥P{|x(t)| < β(|x0|, t) + α−1

1 (δ(α2(α−1(qχ(‖v‖∞) + qd))))}
=P{|x(t ∨ τ1)| < β(|x0|, t) + α−1

1 (δ(α2(α−1(qχ(‖v‖∞) + qd))))}
≥P{{|x(t ∨ τ1)| < α−1

1 (δ(α2(α−1(qχ(‖v‖∞) + qd))))}} ≥ 1− ε′′. (A.16)

When t = 0, by the definition of the set B and the definition of the function γ, we obtain

P{|x(0)| < β(|x0|, 0) + γ(‖v‖∞) + γd} ≥ P{|x(0)| < γ(‖v‖∞) + γd} = 1,

which implies
P{|x(0)| < β(|x0|, 0) + γ(‖v‖∞) + γd} = 1. (A.17)

Thus, by (A.16) and (A.17) we have

P{|x(t)| < β(|x0|, t) + γ(‖v‖∞) + γd} ≥ 1− ε, ∀t ≥ 0, x0 ∈ B\{0}. (A.18)

In conclusion, by (A.15) and (A.18) we have

P{|x(t)| < β(|x0|, t) + γ(‖v‖∞) + γd} ≥ 1− ε, ∀t ≥ 0, x0 ∈ Rn\{0}.

By causality we get

P
{|x(t)| < β(|x0|, t) + γ( sup

0≤s≤t
‖vs‖) + γd

} ≥ 1− ε, ∀t ≥ 0, x0 ∈ Rn\{0}.

The proof is complete.
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[9] Kokotović, P.V., Arcak, M. Constructive nonlinear control: a historical perspective. Automatica, 37:

637–662 (2001)
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